Parise, J. B. \& Day, C. S. (1985). Acta Cryst. C41, 515-520.
Pyke, D. R., Whitney, P. \& Houghton, H. (1985). Appl. Catal. 18, 173-190.
Rizkallah, P. J., Maginn, S. J. \& Harding, M. M. (1990). Acta Cryst. B46, 262-266.

Crystal Chemistry of cyclo-Hexaphosphates. XVII. Structure of Chromium cyclo-Hexaphosphate Henicosahydrate

By M. Bagieu-Beucher and M. T. Averbuch-Рouchot
Laboratoire de Cristallographie, associé à l'Université J. Fourier CNRS, 166X, 38042 Grenoble CEDEX, France
and M. Rzaigu
Ecole Normale Supérieure, Zarzouna Bizerte, 7021 Tunisia

(Received 31 August 1990; accepted 21 January 1991)

Abstract

Cr}_{2}\left[\mathrm{P}_{6} \mathrm{O}_{18}\right] \cdot 21 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=956 \cdot 13\), cubic, $P \overline{4} 3 n, a=19.052$ (10) $\AA, V=6915$ (11) $\AA^{3}, Z=8, D_{x}$ $=1.837 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \bar{\alpha})=0.71073 \AA, \quad \mu=$ $1.062 \mathrm{~mm}^{-1}, F(000)=3936$, room temperature, final $R=0.053$ for 1655 independent reflections. The atomic arrangement of $\mathrm{Cr}_{2} \mathrm{P}_{6} \mathrm{O}_{18} .21 \mathrm{H}_{2} \mathrm{O}$ is a stacking of $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anions, $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ octahedra and nonbonded water molecules interconnected by hydrogen bonds only. The phosphoric ring anion has a threefold internal symmetry. One of the water molecules building the coordination polyhedron of $\mathrm{Cr}(1)$ is disordered.

Introduction. Crystal structure of anhydrous chromium cyclo-hexaphosphate, $\mathrm{Cr}_{2} \mathrm{P}_{6} \mathrm{O}_{18}$, was determined some years ago (Bagieu-Beucher \& Guitel, 1977). Up to now, no mention of the existence of possible hydrates of this salt has been reported in the chemical literature. Recently one of us (Rzaigui, 1990) characterized the first hydrate of this phosphate: $\mathrm{Cr}_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 21 \mathrm{H}_{2} \mathrm{O}$. The present work is devoted to the determination of the crystal structure of this hydrate.

Experimental. The preparation of $\mathrm{Cr}_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 21 \mathrm{H}_{2} \mathrm{O}$ and its main chemical properties have been reported elsewhere (Rzaigui, 1990). Crystal size: $0.32 \times 0.32 \times$ 0.27 mm (a rhombic dodecahedron). Density not measured. Nicolet diffractometer, graphite monochromator. 25 reflections ($10.75<\theta<12.60^{\circ}$) for refining unit-cell dimensions. ω scan, scan width $1 \cdot 40^{\circ}$, scan speed $0.01^{\circ} \mathrm{s}^{-1}$, total background measuring time 14 s .7359 measured reflections, h, k, l,

0108-2701/91/071364-03\$03.00
$h_{\max }=k_{\max }=l_{\text {max }}=26$. Three intensity and orientation reference reflections $(222, \overline{2} 22,411)$ measured every 500 reflections with no significant variations. The systematic absences, $h h l(l=2 n)$, the symmetry of the intensities and the study of the Patterson function lead to the space group $P \overline{4} 3 n$. Lorentz and polarization corrections, no absorption correction. 1807 unique reflections ($R_{\mathrm{int}}=0.02$). The crystal structure has been solved by classical methods: study of the three-dimensional Patterson function followed by successive Fourier syntheses. A problem occurred with the water molecule $\mathrm{O}(W 1)$; first refined in the special position $12(f)$, this molecule had a very high thermal factor with an abnormally short $\mathrm{Cr}(1)$ $\mathrm{O}(W \mathrm{l})$ distance. A careful examination of Fourier maps showed that this water molecule is in fact disordered and split into three fragments of approximately identical weight. Two of these fragments occupy the general position while the third one is located on the special position $12(f)$. These three fragments are denoted $\mathrm{O}(W 1), \mathrm{O}(W 11)$ and $\mathrm{O}(W 12)$. Refinements of the occupancy rates of these three fragments led to $0.186,0.166$ and 0.157 respectively, whose sum (0.499) is close to the expected value of 0.500 . H atoms were located by difference Fourier syntheses with the exception of those corresponding to the disordered water molecule and to $\mathrm{O}(W 9)$, a non-bonded water molecule. Anisotropic full-matrix least-squares refinement (on F), isotropic for \mathbf{H} atoms. Unit weights. Scattering factors for neutral atoms and $f^{\prime \prime}, f^{\prime \prime}$ from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B). EnrafNonius SDP (1977) used for all calculations. Com(C) 1991 International Union of Crystallography

Table 1. Final atomic coordinates and $B_{\text {eq }}$ values ($B_{\text {iso }}$ for H atoms) for $\mathrm{Cr}_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 21 \mathrm{H}_{2} \mathrm{O}$, with e.s.d.'s in parentheses

$B_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \boldsymbol{\beta}_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {cq }} / B_{\text {iso }}\left(\AA^{2}\right)$
$\mathrm{Cr}(1)$	0	0	0	$1 \cdot 37$ (1)
$\mathrm{Cr}(2)$	0	$\frac{1}{2}$	$\frac{1}{2}$	2.21 (3)
$\mathrm{Cr}(3)$	0.19291 (4)	0.19291 (4)	$0 \cdot 19291$ (4)	1.370 (5)
$\mathrm{P}(1)$	0.81004 (9)	0.26868 (8)	0.06546 (8)	1.85 (2)
$\mathbf{P}(2)$	0.44922 (8)	0.37318 (8)	0.25257 (8)	1.93 (2)
$\mathrm{O}(E) 1$)	$0 \cdot 2916$ (3)	0.3845 (2)	0.1750 (2)	2.74 (9)
$\mathrm{O}(E 12)$	0.2116 (3)	0.3185 (4)	0.5084 (3)	4.5 (1)
$\mathrm{O}(\mathrm{LI})$	0.4263 (3)	0.2925 (3)	0.2539 (3)	3.9 (1)
$\mathrm{O}(22)$	$0 \cdot 2729$ (3)	0.3780 (3)	0.4105 (3)	$4 \cdot 4$ (1)
$\mathrm{O}(E 21)$	-0.0004 (3)	0.1906 (2)	$0 \cdot 1106$ (2)	2.53 (8)
$\mathrm{O}(E 22)$	0.6786 (3)	$0 \cdot 1124$ (3)	0.0307 (3)	3.0 (1)
$\mathrm{O}(W 1)$	$0 \cdot 8976$ (9)	0	0	$2 \cdot 7$ (3)
$\mathrm{O}(W \mid 1)$	-0.916 (1)	0.028 (1)	0.049 (1)	2.0 (5)
$\mathrm{O}(W \mid 2)$	-0.946 (1)	0.088 (1)	-0.032 (1)	$2 \cdot 2$ (5)
$\mathrm{O}\left(W_{2}\right)$	0.3960 (3)	0	0	$3 \cdot 7$ (2)
$\mathrm{O}(W 3)$	0.3976 (3)	0	!	3.5 (1)
$\mathrm{O}(W 4)$	$0 \cdot 1045$ (4)	$\frac{1}{2}$	0	$3 \cdot 8$ (1)
O (W5)	0.7268 (2)	0.3666 (2)	0.3830 (2)	2.08 (8)
O (W6)	0.2499 (2)	0.1596 (2)	0.2724 (2)	$2 \cdot 39$ (8)
$\mathrm{O}(W 7)$	$0 \cdot 1925$ (3)	0.0815 (3)	0.3745 (3)	$3 \cdot 6$ (1)
$\mathrm{O}(\mathrm{W8})$	$0 \cdot 1768$ (4)	0.4123 (3)	0.0776 (4)	4.8 (1)
O (W9)	0.8342 (4)	$0 \cdot 1108$ (4)	0.4521 (4)	$6 \cdot 5$ (2)
H(2)	0.485 (5)	0.457 (4)	0.129 (4)	3 (2)
H(3)	0.959 (5)	0.473 (5)	$0 \cdot 132$ (5)	3 (2)
H(4)	0.125 (5)	0.482 (5)	0.051 (5)	4 (3)
H(51)	0.613 (5)	0.286 (5)	0.410 (5)	3 (2)
H(52)	0.234 (5)	0.080 (5)	0.144 (5)	3 (2)
H(61)	0.806 (5)	0.363 (5)	0.271 (5)	3 (2)
H(62)	0.784 (4)	0.224 (4)	0.346 (4)	2 (2)
H(71)	0.664 (5)	0.141 (5)	0.457 (5)	3 (2)
H(72)	0.395 (5)	0.163 (5)	$0 \cdot 108$ (5)	3 (2)
H(81)	$0 \cdot 683$ (5)	0.475 (5)	$0 \cdot 110$ (5)	4 (3)
H(82)	0.721 (5)	0.413 (5)	0.081 (6)	4 (3)

puter used: MicroVAX II. No secondary-extinction correction. Final refinements with 3892 reflections [I $>1 / 2 \sigma(I)$. Final $R=0.053(w R=0.053), S=3.544$, max. $\Delta / \sigma=0.05$, max. peak height in the final difference Fourier synthesis $=0.491$ e \AA^{-3}.

Table 1* reports the final atomic coordinates for this arrangement. The drawings were prepared using STRUPLO (Fischer, 1985).

Discussion. The present atomic arrangement is essentially that of a stacking of $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anions, $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ octahedra and non-bonded water molecules. So, in such a structure in which there is no common O atom between the phosphoric anion and the associated cation polyhedra, the threedimensional cohesion is performed only by hydrogen bonds.

The phosphoric ring anion. The unit cell contains eight $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anions. Located around the threefold axes these anions have ternary internal symmetry and so are built by only two independent PO_{4} tetrahedra. The $\mathrm{P}-\mathrm{P}-\mathrm{P}$ angles vary from 104.43 to

[^0]Table 2. Main interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ in the atomic arrangement of $\mathrm{Cr}_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 21 \mathrm{H}_{2} \mathrm{O}$, with e.s.d.'s in parentheses

Fig. 1. Projection along the c axis of the arrangement of $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anions and Cr atoms in $\mathrm{Cr}_{2} \mathrm{P}_{6} \mathrm{O}_{18} \cdot 21 \mathrm{H}_{2} \mathrm{O}$. Water molecules have been removed. $\mathrm{Cr}(1)$ and $\mathrm{Cr}(2)$ atoms are superimposed in projection.
$109 \cdot 50^{\circ}$. This variation agrees well with the average values observed in $\mathrm{P}_{6} \mathrm{O}_{18}$ rings with 3 or $\overline{3}$ internal symmetries which were recently reviewed (AverbuchPouchot \& Durif, 1991).

Fig. 2. Projection along the c axis of $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ octahedra and non-bonded water molecules in $\mathrm{Cr}_{2} \mathrm{P}_{6} \mathrm{O}_{18} .21 \mathrm{H}_{2} \mathrm{O}$. The ring anions have been removed. $\mathrm{Cr}(1)\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ and $\mathrm{Cr}(2)\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ octahedra are superimposed in projection.

The $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ octahedra. The chromium coordination polyhedra are all built by water molecules and do not share any corner or edge. $\mathrm{The} \mathrm{Cr}(1)\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ octahedron has a disordered coordination already discussed in Experimental. $\mathrm{Cr}(2)$ located on the special position $6(b)$ is surrounded by $\mathrm{O}(W 2), \mathrm{O}(W 3)$
and $\mathrm{O}(W 4)$ water molecules building an almost regular octahedron of symmetry $222 . \operatorname{Cr}(3)$ is located on the ternary axis; $\mathrm{O}(W 5)$ and $\mathrm{O}(W 6)$ are built around it in a quasi-regular octahedron with threefold internal symmetry.

In addition, it must be noted that $\mathrm{O}(W 7), \mathrm{O}(W 8)$ and $\mathrm{O}(W 9)$ water molecules are not involved in the associated cation polyhedra. Two of these molecules have thermal factors significantly larger than those belonging to the chromium coordination.

Main interatomic distances and bond angles in this arrangement as well as the hydrogen-bond scheme are reported in Table 2. Fig. 1 reports in projection along the c axis the arrangement of $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anions and Cr atoms while Fig. 2 gives in projection along the same axis the arrangement of $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ octahedra and non-bonded water molecules.

References

Averbuch-Pouchot, M. T. \& Durif, A. (1991). Eur. J. Solid State Inorg. Chem. In the press.
Bagieu-Beucher, M. \& Guitel, J. C. (1977). Acta Cryst. B33, 2529-2533.
Enraf-Nonius (1977). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Fischer, R. X. (1985). J. Appl. Cryst. 18, 258-262.
Rzaigui, M. (1990). J. Solid State Chem. Submitted.

Acta Cryst. (1991). C47, 1366-1368

Structure of $\mathbf{E r}_{2} \mathbf{B a}_{\mathbf{3}} \mathbf{C u}_{2} \mathbf{P t O}_{\mathbf{1 0}}$

By Yoko Saito,* Kazutoshi Ukei, Toetsu Shishido and Tsuguo Fukuda
Institute for Materials Research, Tohoku University, Katahira, Sendai 980, Japan

(Received 8 August 1990; accepted 2 January 1991)

Abstract. $M_{r}=1228.7$, monoclinic, $C 2 / m, \quad a=$ 12.465 (3),$\quad b=5.795$ (1),$\quad c=7.362$ (1) $\AA, \quad \beta=$ $105 \cdot 54(2)^{\circ}, \quad V=509.9(2) \AA^{3}, \quad Z=2, \quad D_{x}=$ $8.01 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=0.71073 \AA, \quad \mu=$ $45.8 \mathrm{~mm}^{-1}, F(000)=960$, room temperature, final R $=0.043$ for $982\left[\left|F_{o}\right|>3 \sigma\left(F_{o}\right)\right]$ unique reflections. The crystal is one of the compounds of rare-earth-barium-copper-platinum complex-oxides series and isomorphous with other $R_{2} \mathrm{Ba}_{3} \mathrm{Cu}_{2} \mathrm{PtO}_{10}(R=\mathrm{Y}, \mathrm{Ho})$ oxides. In this compound, two distorted square pyramids of $\mathrm{Cu}^{1 \mathrm{I}}$ and one distorted octahedron of $\mathrm{Pt}^{\mathrm{IV}^{\mathrm{V}}}$ are connected with each other by face sharing of the

[^1]polyhedra. The relationship between crystal structure and equilibrium stability of $R_{2} \mathrm{Ba}_{3} \mathrm{Cu}_{2} \mathrm{PtO}_{10}$ and $R_{2} \mathrm{Ba}_{2} \mathrm{CuPtO}_{8}$ is discussed.

Introduction. Recently, a new series of quadruple oxides composed of rare earth, barium, copper, platinum and oxygen (RBCPO; $R=$ rare-earth elements) was found during the single-crystal growth of $R \mathrm{Ba}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-\sigma}$ superconductors by the CuO selfflux method. In this series two types of compounds, $R_{2} \mathrm{Ba}_{2} \mathrm{CuPtO}_{8}$ ($R=\mathrm{Ho}$, Er, Y; Saito, Ukei, Shishido \& Fukuda, 1990; Ukei, Shishido \& Fukuda, 1988; Laligant, Ferey, Hervieu \& Raveau, 1987; Swinnea \& Steinfink, 1987) and $R_{2} \mathrm{Ba}_{3} \mathrm{Cu}_{2} \mathrm{PtO}_{10}(R=\mathrm{Ho}, \mathrm{Y} ;$ Geiser, Porter, Wang, Allen \& Williams, 1988), have © 1991 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters for non-H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53952 (16 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Present address: Institute of Mineralogy, Faculty of Science, University of Tokyo, Hongo, Tokyo 113, Japan.

